PLOW Filter for Color Image Denoising
نویسنده
چکیده
In this paper, a denoising approach, which exploits patchredundancy for removing Gaussian noise from RGB color images is described. Both geometrical and photometrical similarity of image patches have to be considered for learning the parameters of this Patch-based Locally Optimal Weiner(PLOW) filer. K-means clustering,with LARK(Locally Adaptive Regression Kernel) features, is used to identify the geometrically similar patches. As opposed to traditional color image denoising approaches, that perform denoising in each color channel independently, this method performs denoising in the luminance-chrominance color space and thus exploits correlation across color components. Since the luminance component, Y, contains most valuable image features such as objects, shades, textures, edges and patterns etc., the information from the luminance component is only needed for clustering. Experimental results show that the denoising performance of the proposed method is better in terms of both peak signal-to-noise ratio and subjective visual quality.
منابع مشابه
PLOW Filter for Color Image Denoising
In this paper, a denoising approach, which exploits patchredundancy for removing Gaussian noise from RGB color images is described. Both geometrical and photometrical similarity of image patches have to be considered for learning the parameters of this Patch-based Locally Optimal Weiner(PLOW) filer. K-means clustering,with LARK(Locally Adaptive Regression Kernel) features, is used to identify t...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملImproved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images
Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کامل